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1 Abstract

Standard high-dimensional regression methods assume that the underlying
coefficient vector is sparse. This might not be true in some cases, in particular
in presence of hidden, confounding variables. Such hidden confounding can
be represented as a high-dimensional linear model where the sparse coefficient
vector is perturbed. We develop and investigate a class of methods for
such model. We propose some spectral transformations, which change the
singular values of the design matrix, as a preprocessing step for the data
which serves as input for the Lasso. We show that, under some assumptions,
one can achieve the optimal `1-error rate for estimating the underlying sparse
coefficient vector. We also illustrate the performance on simulated data and
a real-world genomic dataset.

2 Introduction

Many datasets nowadays include measurements from many variables.
The corresponding models are typically high-dimensional with many more
parameters than the sample size. For statistical estimation and inference,
there is a vast literature which assumes sparsity. See, for example, the
monographs [4, 9, 12]. Most often, sparsity is assumed in the strong `0 sense,
saying that only a small number of coefficients or parameters are non-zero.
Extensions of such (strong) sparsity are mentioned below.

Our focus is on linear models. If we assume that the response is affected
only by a small number of predictors, meaning that the coefficient vector
is sparse, we can efficiently estimate the active set and the corresponding
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coefficients with the Lasso and related methods achieving the minimax optimal
`1 estimation error rate, see [4, 26, 2]. However, sometimes the sparsity
assumption is not adequate and one needs to relax it. Instead of just a
few predictors affecting our response, we might additionally have a small
contribution from many predictors. Such situations are covered with (i) the
notion of weak sparsity [24], where the parameter β fulfils the condition that
‖β‖q is small for some 0 < q < 1 or (ii) assuming the structure that β can be
represented as a sum of a sparse and a dense vector. The case (i) does not
call for a new method or algorithm: in fact, the Lasso still exhibits optimal
convergence rate if ‖β‖q is sufficiently small [24]. On the other hand, case
(ii) requires a different method such as Lava [6]. We investigate in this paper
how to deal with the case (ii) when the parameter is a sum of a sparse and a
dense part.

We propose a simple spectral transformation, the so-called Trim transform,
of the response Y and the design matrix X consisting of the values of the
predictors. The transformed response and design matrix are then the input
for a high-dimensional sparse regression technique: we consider the Lasso
as a prime example. We investigate the theoretical properties and empirical
performances for a class of spectral transformations. As a result, we conclude
why our Trim transform, but also the Lava method [6], are favourable over a
range of scenarios, pointing out also some advantages over other techniques
and approaches, see also Section 2.1.

One of our main motivations to study the case (ii) with a sum of sparse
and dense parts of the parameter is that it arises in presence of confounding
variables which affect both the predictors and the response, thus introducing
additional correlations. Confounding variables are additional variables that
we did not account for by including them in our model. Some examples of
confounding variables are the age or gender of patients or batch effects such as
the equipment used or laboratory conditions such as temperature or humidity.
If many predictors are affected by the confounding variables, we expect that
the true underlying regression vector will be changed by some small, dense
perturbation.

Confounding is a severe issue when interpreting regression parameters,
often, but not necessarily, in connection with causal inference. A prime
example are genetic studies where unobserved confounding can easily lead
to spurious correlations and partial dependencies [20]. Adjusting for the
confounding variables is very important in practice and several deconfounding
methods have been suggested for various settings [8, 17, 7, 22, 27]. Many
methods try to estimate the confounding variables directly from the data,
usually by using some factor analysis technique and often ignoring other
effects, which might be very hard to do accurately. Some methods require
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additional assumptions about the confounding structure which might not
hold, for example that the batches are known [16]. In addition, there are not
many theoretical results that justify the methods, especially since many are
quite complicated and therefore difficult to analyse.

2.1 Relation to other work and our contribution

For adjusting for the effect of the confounding variables, the most promi-
nent method in practice is to remove the top several principal components of
the predictors, see for example [20]. Such PCA adjustment is a special case
of a spectral transformation. Our presented theory explains when and why
this works well and we conclude that our proposed Trim transform is often a
better choice.

Chandrasekaran et al. [5] have addressed the problem of estimating the
precision matrix, assumed to be sparse, if a few variables are unobserved. Then
the observed precision matrix can be represented as a sum of the initial sparse
precision matrix and a low-rank perturbation due to the confounding variables.
This model is similar to the one we consider, but the assumptions and the
goals differ. We aim to estimate just the regression coefficients instead of the
whole precision matrix and the method we use is much simpler. Furthermore,
the theoretical conclusions are substantially different: we establish optimal
convergence rates in terms of the `1-norm estimation error while they consider
support recovery and `∞ bounds for the low-dimensional setting, assuming
strong conditions.

The Puffer transform has been suggested for improving the variable
selection properties of the Lasso for a sparse high-dimensional linear model
[15]. Our theory gives a much more precise result about the Puffer transform:
the Trim transform is at least as good as Puffer transform and substantially
better when the number of samples is close to the number of predictors. Shah
et al. [23] use the Puffer transform in combination with bootstrap aggregation
in order to estimate the covariance matrix, a very different quantity than the
precision matrix or regression coefficients, under the presence of confounding
variables.

The Lava estimator [6] is the most similar to our Trim transform. The
theory we develop gives a clean result for the `1-norm estimation error for
the sparse parameter vector and establishes the optimal minimax conver-
gence rate. Such result has not been established in [6]. In addition, our
developments suggests a simple rule for choosing the tuning parameter of
the Trim transform; for the Lava, it also suggests the choice of the `2-norm
regularization parameter.

Our contribution can be seen as threefold. We propose a simple spectral

3



transformation called Trim transform which is perhaps slightly easier to
use than the Lava estimator. Furthermore, for the linear model where the
underlying sparse parameter has been perturbed, we provide novel theory
establishing optimal convergence rates for a class of spectral transformations
for the `1-norm estimation error of the true underlying sparse parameter.
Finally, we use these results to show how the issue of confounding can be
addressed by the Trim transform and using the Lasso afterwards: we establish
the optimal convergence rate under some assumptions and illustrate the
empirical performances on simulated and real genomic data. Our method is
entirely modular and can be used in conjunction with any high-dimensional
regression methods, including the Lasso and many other algorithms.

3 The models

We are going to consider two models: a perturbed linear model and a
confounding model. The latter can be represented as a perturbed linear model
with a special structure of the perturbation term.

3.1 Perturbed linear model

Let us consider the sparse linear regression model, where the sparse
coefficient vector has been perturbed by some vector b:

Y = X(β + b) + ε. (3.1)

Here Y ∈ Rn is the response vector and X ∈ Rn×p is the design matrix, fixed
or random, β ∈ Rp is a sparse vector and typically dense b ∈ Rp, which we
think of as a perturbation of the sparse vector β; n denotes the sample size
and p the number of predictor variables. The main interest is to recover the
sparse part β of the regression parameter: the dense perturbation is viewed
as a nuisance which we want to get rid of. The support of β is denoted by
S and its size by s. Finally, the errors are assumed to be independent and
identically distributed sub-Gaussian variables with mean zero and parameter
σ2.

We are going to focus on the case where X has a fixed design. The results
for random design, where the rows of X are independent and identically
distributed random vectors, follow from the results for a fixed design by
conditioning on X.

Our model is in general unidentifiable since we can only infer β + b from
the data. This makes the estimation of β impossible, unless we impose some
conditions on b. If b has certain structure, we will be able to retrieve the
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sparse β, e.g. by assuming that b is dense or converges to 0 in some norm.
We investigate under which conditions we are able to infer the sparse part β
and how efficiently in terms of statistical accuracy.

3.2 Confounding model

A prominent case when a perturbation of β occurs is caused by some
unobserved, confounding variables affecting both the predictors and the
response. In this way, we observe spurious regression coefficients between the
predictors and the response without actual causation. The model is given by:

X = HΓ + E

Y = Xβ +Hδ + η. (3.2)

with random terms H ∈ Rn×q, E ∈ Rn×p and η ∈ Rn having independent
rows and being jointly independent of each other. We note that this is a
model with random design matrix X with i.i.d. rows.

Here H ∈ Rn×q is the random matrix of the hidden confounding variables,
where q is their number. The matrix Γ ∈ Rq×p and the vector δ ∈ Rq contain
the coefficients describing the linear effect of those confounding variables
on X and Y , respectively. The random term E ∈ Rn×p can be seen as
the unconfounded design matrix; without confounding (Γ = 0) it equals
X. The columns of E are allowed to be correlated; if the components of E
are uncorrelated, X is generated from a factor model [1]. Here, in addition,
the hidden variables do not encode a factor structure for X alone, but also
generate confounding effects. η ∈ Rn is a vector of additive errors

Remark (Structural Equation Model). A main example of the model in (3.2)
is a structural equation model (SEM) where X ← HΓ+E, Y ← Xβ+Hδ+η
and thus β is the causal effect of X on Y . In a standard SEM with no further
hidden variables, the components of E would be assumed independent.

We further require a Gaussianity assumption for the model in (3.2),
primarily to make the theory in Section 5 more straightforward; see also
the comment about the Gaussian assumption below. Assuming the rows of
H are multivariate normal random variables, without loss of generality we

may assume that Hij
i.i.d.∼ N(0, 1), because otherwise we can change Γ and δ

accordingly. The rows of E are independent and identically distributed as
Np(0,ΣE) for some fixed covariance matrix ΣE ∈ Rp×p. The components of
the response error η are i.i.d. sub-Gaussian random variables with parameter
σ2
η assumed to be η ∼ Nn(0, σ2

ηIn).
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Considering the distribution of the observed variables X, Y , we get that
the model in (3.2) is equivalent to the perturbed model Y = X(β + b) + ε
with the rows of X being independent and identically distributed as Np(0,Σ),
where now

Σ = ΓTΓ + ΣE

σ2 = σ2
η + ‖δ‖2

2 − δTΓ(ΓTΓ + ΣE)−1ΓT δ

b = (ΓTΓ + ΣE)−1ΓT δ (3.3)

Thus, in the confounding model the coefficient perturbation arises naturally
and it has a complex relationship to the design matrix.

Remark (Gaussianity assumption). In the confounding model we have

Y = X(β + b) + (Hδ −Xb) + ν

and b satisfies that Cov(X,Hδ −Xb) = 0. The Gaussianity assumption in
the confounding model gives us that X and Hδ − Xb are independent, so
the design matrix X is independent of the error term ε = Hδ −Xb+ ν. We
require such independence in the proof of Theorem 1 in order to bound the
tail of ‖XT ε‖∞. One might still be able to bound the latter when ε is only
uncorrelated with X, but our theory does not cover this case.

4 Method

In the following, we propose and motivate some methods based on a class
of spectral transformations.

4.1 Spectral transformations

Let X = UDV T be the singular value decomposition of X, where U ∈
Rn×r, D ∈ Rr×r, V ∈ Rr×p, where r = min(n, p) is the rank of X. We write
d1 ≥ d2 ≥ . . . ≥ dr for the diagonal elements of D. We use the form of SVD
which uses only non-zero singular values.

The idea is to first transform our data by applying some specific linear
transformation F : Rn → Rn and then perform the Lasso algorithm:

X → X̃ := FX

Y → Ỹ := FY

β̂ = arg min
β

{
1

n
‖Ỹ − X̃β‖2

2 + λ‖β‖1

}
.
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We restrict our attention to the class of spectral transformations, which
transform the singular values of X while keeping its singular vectors intact.
Let D̃ be an arbitrary r× r diagonal matrix with diagonal elements d̃1, . . . , d̃r.
Our spectral transformation matrix is given by

F = U


d̃1/d1 0 . . . 0

0 d̃2/d2 . . . 0
...

...
. . .

...

0 0 . . . d̃r/dr

UT (4.1)

and then we have
X̃ = FX = UD̃V T

In this paper we explore the question of what is a good choice of F for
the estimation of β. In general, the Lasso performs best when the predictors
are uncorrelated and when the errors are independent. Therefore, a good
choice of F needs to find a good balance between a well behaved error term
ε̃ = Fε, well behaved design matrix X̃ and well behaved perturbation term
X̃b. We show that we can, under some assumptions, achieve the optimal
`1-norm error rate for the estimation of the unknown sparse coefficients.

In order to do that, our spectral transformation must not significantly
increase the small singular values, must ensure that there are no singular
values which are much larger than the rest and that sufficiently many singular
values stay reasonably large.

One such transformation is the Trim transform which limits all the
singular values to be at most some constant τ .

d̃i = min(di, τ) (4.2)

We also show that the median singular value is a good choice of τ :

τ = dbr/2c

4.2 Existing methods and motivation

We discuss some existing methods which are special cases of spectral
transformations and provide further explanations and relations.

4.2.1 Examples of spectral transformations

Several existing methods consist of first transforming the data with a
certain spectral transformation as in (4.1), for some choice of the matrix D̃,
and then running some regression algorithm, such as the Lasso.
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Lava One such example is the Lava estimator [6], designed for the linear
model where the coefficient vector can be written as a sum of a dense and a
sparse vector. It is originally given by

(β̂, b̂) = arg min
β,b

{
1

n
‖Y −X(β + b)‖2

2 + λ2‖b‖2
2 + λ1‖β‖1

}
which can be seen as a combination of Lasso and Ridge regression. It is shown
in [6] that the solution of this optimization problem is given by

F = (Ip −X(XTX + nλ2Ip)
−1XT )1/2,

β̂ = arg min
β

{
1

n
‖Ỹ − X̃β‖2

2 + λ1‖β‖1

}
,

b̂ = (XTX + nλ2Ip)
−1XT (Y −Xβ̂).

From here one can see that the estimator of the sparse part is just a Lasso
estimator applied on the transformed data where

d̃i =

√
nλ2d2

i

nλ2 + d2
i

.

This transformation is visualized in Figure 5.1.

Puffer transform Another example is the Puffer transform introduced
in [15], which uses the Lasso after mapping all non-zero singular values to
d̃i = 1. The algorithm is analyzed in [15] as a pre-conditioning method for the
variable selection problem when there is no coefficient perturbation present.
This transformation decreases the correlations between the columns of the
design matrix, but it can inflate the errors, especially when p is close to n. It
can also be thought of as a special case of the Lava transformation in the case

when λ2 → 0, since then d̃i√
nλ2
→ 1 (the denominator here is just a scaling

factor). The transformation is displayed in Figure 5.1.

PCA adjustment Another example of a spectral transformation is given
by PCA-based methods for adjusting for hidden confounders [21]. One adjusts
for a first few principal components from the columns of the design matrix
X before further analysis in hope of removing the effect of the confounding
variables [22], [13]. This procedure is in fact analogous to applying a spectral
transformation, where the matrix D̃ is obtained from D by mapping to 0
the singular values corresponding to the prinicipal components one wants to
adjust for. See also Figure 5.1 for an illustration.
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In the confounding model (3.2), the effect of the coefficient perturbation
will approximately lie in the span of the first few principal components of
X (see Figure 4.1). One can reduce the effect of the confounding variables
by removing those principal components. This also helps to decorrelate the
columns of X. The problem with this approach is that we need to know how
many principal components to remove in order to reduce the effect of the
confounding variables, but still preserve the signal. This might be hard to do,
unless the effect of the confounding is so strong that several singular values
of X are significantly larger than the rest.

4.2.2 Visual representation

We would like that the perturbation term Xb is small compared to the
signal Xβ. The more b is aligned with the singular vectors of X corresponding
to the large singular values, the larger ‖Xb‖2 will be. This will especially be
the case in the confounding model (See Figure 4.1).

Figure 4.1: Size of the projection of b onto Vi for different i, for a random
dataset drawn from the confounding model with q = 10 confounding variables,
as described in section 6.1.1. We see that the projections of b on the first 10
singular values are substantially larger than the rest.

Shrinking large singular values ensures that ‖X̃b‖ stays small regardless
of the direction b is pointing to. On the other hand, we do not expect β
to be aligned with the large singular vectors, which is very unlikely. This
is represented in Figure 4.2. Therefore, by shrinking large singular values,
‖Xβ‖2 will decrease much more compared to ‖Xb‖2.
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Figure 4.2: Visualisation of the relationship between the perturbation b, signal
β and singular vectors of X. In the confounding model b will be much more
aligned with the singular vectors corresponding to the large singular values
than β.

4.2.3 Goodness of fit and a connection to the Lava method

There is a large literature on penalized least squares estimators for different
penalty terms. Our method, on the other hand, keep the `1 penalty from the
Lasso, but change the goodness of fit term. Instead of using the `2 distance
between the measured response Y and the fit Xβ̂, we use a different metric:

β̂ = arg min
β

{
1

n
(Y −Xβ)TF TF (Y −Xβ) + λ‖β‖1

}
.

This penalizes the residual differently in different directions. This is sensible
because the residuals have different variances in different directions due to
the coefficient perturbation:

Y −Xβ = Xb+ ε =
n∑
i=1

(
di(V

T
i b) + (UT ε)

)
Ui

Assuming that the residual has mean 0, the second moment of the residual
in the direction of Ui conditional on the design X is d2

iE[(V T
i b)

2|X] + σ2. In
order to penalize all directions equally, we would need to scale down the
corresponding singular value by

√
d2
iE[(V T

i b)
2|X] + σ2. Therefore, we would

need to have

d̃i ∝
di√

d2
iE[(V T

i b)
2|X] + σ2
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This additionally justifies using the spectral transformations which keep U
fixed and transform only the singular values of X.

As an example, in the case when the perturbation vector is isotropic and
independent of X, so that E[(V T

i b)
2|X] does not depend on i, we get from

above that

d̃i ∝
di√

d2
i + pσ2

E‖b‖22

(4.3)

which is exactly the transformation of the Lava algorithm.
We note that generalised least squares also falls into the category of

changing the goodness of fit measure to

(Y −Xβ)TΩ−1(Y −Xβ).

Here, however, the matrix Ω−1 is decorrelating the error and has nothing
to do with the spectrum of X. In fact, our presented theory in Section
5 analyses the effect of a spectral transformation on the error in terms of
leading to correlated and inflated errors. It shows that we have to deal with
a trade-off between error inflation and deconfounding or reducing the effect
of the coefficient perturbation.

5 Theoretical Results

In this section we analyse how the `1-estimation error for the sparse
coefficient β behaves depending on the spectral transformation we are using.
We derive results for the perturbed linear model (3.1) and then we use the
relationship (3.3) to establish results for the confounding model.

We show that, under the model assumptions given in Section 5.3.1 with the
Trim transform (4.2), even in the presence of the coefficient perturbation, we
achieve the minimax optimal rate of the Lasso in the case without perturbation.
In addition, we give sufficient conditions for other spectral transformations to
achieve this rate and explore when these conditions are satisfied. Finally, we
discuss under which assumptions for the confounding model (3.2) we can apply
our results for the perturbed linear model to get the optimal `1-estimation
rate of the underlying sparse parameter.

5.1 Notation

For any square matrix M we define the compatibility constant which is a
kind of smallest restricted eigenvalue for measuring the well-posedness of M
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[4]:

φM := inf
‖α‖1≤5‖αS‖1

√
αTMα

1√
s
‖αS‖1

,

where S is the support set of β, s is the size of S and αS is a vector consisting
only of the components of α which are in S.

Let us also write Σ̃ := 1
n
X̃T X̃, and Σ̂ = 1

n
XTX. We denote the k-th

largest diagonal element of the transformed singular values D̃ by d̃(k). We
write V(k) for the corresponding column of V , where X = UDV T is the SVD of
X and write also Mk = [V(1), . . . , V(k)][V(1), . . . , V(k)]

T . We denote the smallest
(non-zero) singular value of any rectangular matrix A by λmin(A).

Finally, we use the notation A = Ω(B) if B
A

= O(1), i.e. if A has asymp-
totically at least the same rate as B. A = Op(B) means that there exists a
constant c > 0 such that P(A > cB)→ 0 and Ωp is defined analogously.

5.2 Upper bounds for the `1-estimation error of β

The first result describes the effect of an arbitrary linear transformation
on the `1-estimation error of the Lasso:

Theorem 1. Assume the model in (3.1) with fixed design X and i.i.d. zero-
mean sub-Gaussian errors εi, for i = 1, . . . n. Let F ∈ Rn×n be an arbitrary
linear transformation and A > 0 an arbitrary fixed constant. Then there exists
λmin ≥ 0 such that for any λ ∈ [λmin, Bλmin], where B ≥ 1 is a fixed constant,
and with probability at least 1− 2p1−A2/8 we have

‖β̂ − β‖1 ≤ C1
sσ

φ2
Σ̃

√
log p

n
max
i

(
XT (F TF )2X

n

)1/2

ii

+ C2

√
s

n

‖X̃b‖2

φΣ̃

,

where C1, C2 are constants depending only on A and B.

This bound exhibits a relationship between the effects of our transforma-
tion on the error via the quantity maxi

(
XT (F TF )2X

)
ii

which is the maximal

variance of some component of X̃T ε̃, on the coefficient perturbation appearing
as ‖X̃b‖2, and on the design matrix via the compatibility constant φΣ̃. We
need to balance the effect of these three terms.

Theorem 1 holds for any linear transformation F . In the following, also
motivated by the arguments in Section 4.2, we restrict ourselves to spectral
transformations. We will describe a class of spectral transformations F which
leads to optimal rates as described in Theorem 3 which says that, under some
assumptions,

‖β̂ − β‖1 = Op

(
σs

λmin(Σ)

√
log p

n

)
.
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Thus, for rate-optimality, it suffices to consider spectral transformations.
In order to proceed, we need to understand how exactly φΣ̃ depends on

the transformed singular values in D̃. The answer to this question depends
delicately on the singular vectors V of X as well. The following bound helps
us to understand the behaviour of the compatibility constant depending on
the transformed singular values.

Lemma 1. Consider a spectral transformation F as in (4.1). Let 1 ≤ k <
r = min(n, p) be an arbitrary integer. Then:

φ2
Σ̃
≥

r∑
i=1

1

n
d̃2

(i)(φ
2
Mi
− φ2

Mi−1
) ≥ 1

n
d̃2

(k)φ
2
Mk
.

Using this Lemma and Theorem 1, we can describe the dependence of the
`1-estimation error on the transformed singular values d̃i:

Theorem 2. Under assumptions of Theorem 1, for any k ≤ r = min(n, p)
and any spectral transformation F mapping di to d̃i, we get

‖β̂ − β‖1 ≤ C1
sσ

1
n
d̃2

(k)φ
2
Mk

√
log p

n
max
i

(
d̃i
di

)2

+ C2

√
s
d̃(1)‖V T b‖2

d̃(k)φMk

.

Since nothing changes in our bounds if we multiply all d̃i by a constant, we
will assume without loss of generality that d̃i ≤ di, so we are only shrinking

the singular values. This allows us to control the term maxi

(
d̃i/di

)2

in

Theorem 2.
In order to control the error caused by the coefficient perturbation, we

need to make d̃(1) small (see Theorem 2). However, we need to carefully shrink
the singular values, since we need φΣ̃ to stay large. One can easily show that

under some mild conditions, the sample covariance matrix Σ̂ = XTX
n

satisfies

φ2
Σ̂
≥ λmin(Σ)

2
with high probability (see [4]) and we need to ensure that φΣ̃ is

bounded away from zero as well.

5.3 Optimal rates for `1-estimation error of β

We develop here the theory for optimal convergence rate of ‖β̂ − β‖1. In
what follows, we assume for simplicity that we have the high-dimensional
case, where p ≥ n. However, the theory developed in the rest of this section
also holds for the case n > p with small adjustments. We will discuss the
case n > p in more details in the section 5.5.

13



5.3.1 Model assumptions

We require the following assumptions:

(A1) (Coefficient perturbation) The perturbation vector b satisfies

‖V T b‖2 = O

(
σ

λmin(Σ)

√
s log p

p

)
.

(A2) (Singular vectors of X) For any k = Ω(n), we have

φ2
Mk

= Ω

(
n

p

)
.

(A3) (Singular values of X) For any k such that lim sup k
n
< 1 it holds that

d2
k = Ω (λmin(Σ)p) .

We will justify these assumptions and give examples of the models for
which they hold in the Section 5.4.

5.3.2 Rate-optimal spectral transformations

Assumption (A1) implies that the perturbation b is not too big. Assump-
tion (A2) states that φMk

is not too small for any k of order n. If in addition
a certain proportion of the transformed singular values d̃i is large enough,
Lemma 1 ensures that φΣ̃ is bounded away from zero. In addition, assumption
(A3) ensures that enough of the singular values of X are large enough, so it
is indeed possible to choose such d̃i.

Theorem 3. Assume that the model assumptions (A1), (A2) and (A3)
hold. Consider a spectral transformation F = UD̃D−1UT with d̃i ≤ di which
satisfies: there exists k = Ω(n) such that

(B1) d̃(k) = Ω
(
d̃(1)

)
(B2) d̃2

(k) = Ω (λmin(Σ) p)

Then we can choose λ so that, despite the coefficient perturbation, the `1-
estimation error achieves the minimax optimal rate:

‖β̂ − β‖1 = Op

(
σs

λmin(Σ)

√
log p

n

)
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In addition, the Trim transform (4.2) with τ = dbtnc, where t ∈ (0, 1) is an
arbitrary constant, satisfies the conditions (B1) and (B2). Other examples
of such spectral transformations are discussed below.

Remark. If we just require consistency ‖β̂ − β‖1 = oP (1) instead of the

optimal rate, we can relax the assumption (A1) to ‖V T b‖2 = o
(√

n/(ps)
)

.

Furthermore, if the assumptions (A3) and (A2) do not hold for all k, but
there only exists a constant k satisfying d2

k = Ω(λmin(Σ)p) and φ2
Mk

= Ω (n/p)
then the Trim transform with parameter τ = dk still achieves the minimax
optimal rate of the `1-estimation error.

The assumption (B1) states that, after applying the transformation, the
largest singular value is not too large, i.e. it is of the same order as some
fraction of other singular values. This controls the effect of the coefficient
perturbation. The assumption (B2) ensures that after transformation, some
fraction of the singular values is large enough so that we still keep enough of
the signal.

There are several different possibilities, in addition to the Trim transform,
for choosing a spectral transformation that satisfies the assumptions (B1)
and (B2). We will list some possibilities below. However, in order to achieve
the optimal rate, some of them, such as the Lasso or PCA adjustment,
need further assumptions on the distribution of singular values. The visual
representations of the spectral transformations discussed below is given in
the Figure 5.1.

Lasso The simplest option is to take d̃i = di, i.e. the usual Lasso algorithm.
Assumption (B2) is trivially satisfied if our model satisfies the assumption
(A3). However, (B1) requires that the largest singular values does not depart
from the others. This is true if the predictors are i.i.d. which typically does
not hold, for example, in the presence of confounding variables.

Trim transform The Trim transform (4.2) with τ = dbtnc for some t ∈ (0, 1)
fixes the problems with the Lasso, as we have seen in Theorem 3. If we take
k = btnc, we see that d̃(k) = d̃(1) so (B1) holds. Furthermore, the assumption
(A3) implies the assumption (B2).

Step function The assumptions (B1), (B2) will still be true even if we
in addition shrink any singular value di ≤ τ arbitrarily. For example, we
can map them to 0 so that our mapping is a step function: d̃i = τ1(di ≥ τ).
However, it might be better not to shrink those singular values, since this
makes the compatibility constant larger.
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Figure 5.1: Singular values of X̃ after applying spectral transformations
corresponding to different methods to 40× 60 matrix X with i.i.d. standard
normal entries.

PCA adjustment The method which removes some principal components
by mapping the corresponding singular values to 0 will satisfy (B1) if we
remove the large principal components. However, we need to make sure that
we keep a proportion of the principal components with large singular values
in order to satisfy (B2). This is only possible if only a few of the principal
components of X are much larger than the rest, which is the case if the
number of the confounding variables is small.

Puffer transformation For the Puffer transform [15], where we map all
singular values to a constant dn (because of homogeneity it does not matter
to which constant we map it, but we have assumed w.l.o.g. that d̃i ≤ di,
so we need to map them to dn), the assumption (B1) is trivially satisfied.
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However, for (B2) we need to have d2
n = Ω (λmin(Σ) p). From [25], we have

that this will hold if and only if lim inf p
n
> 1.

Lava The mapping di → cdi/
√
c2 + d2

i used in the Lava algorithm [6]

behaves similarly as the Trim transform d̃i = min(di, τ). It leaves the small
singular values almost unchanged and approximately maps the large singular
values to a constant c. If we take k = btnc and c = dbtnc where t ∈ (0, 1),

the assumption (B1) is satisfied since d̃1 ≤ c =
√

2d̃k. Furthermore, by
assumption (A2) we have d̃2

k = 1
2
d2
k = Ω(λmin(Σ)p), so the assumption (B2)

is satisfied. This transformation has the property that it is smoother than the
Trim transform. We note that with this comment and Theorem 3, we have
established the rate optimality of Lava for estimating the sparse parameter β
in a high-dimensional regression model: such an optimality result of Lava is
not given in [6].

There are plenty of other mappings which one can use and with the same
properties. For example, the arctan mapping di → 2c

π
arctan

(
πdi
2c

)
or the

exponential mapping di → c− c exp
(
−di

c

)
. However, such transformations

are somewhat artificial and do not have the interpretation as the Lava, which
arises as the solution of the modified Lasso optimization problem with an `1-
and `2-norm regularization.

5.4 Validity of the assumptions

In this section we will justify the assumptions from Section 5.3.1. We will
especially focus on the confounding model (3.2) in order to investigate under
which assumptions on this model our method achieves the optimal error rate.

Assumption (A1) This condition says that the coefficient perturbation
can not be too large. Since in general it is impossible to distinguish the
true coefficient vector β from the perturbed coefficient vector β + b, our
model is unidentifiable. To address this, we assume for the perturbation
that ‖V T b‖ → 0. The rate O(

√
log p/p) may seem too strict, but this is the

rate with respect to the `2-norm, so if the perturbation vector is dense, this
becomes approximately ‖b‖1 = O(

√
log p).

For the worst case coefficient perturbation, where we want to be able to
ensure that the estimation error is small regardless of the direction of the
perturbation vector b, we need to assume ‖b‖2 = O(

√
log p/p). However, if

our coefficient perturbation is drawn uniformly from a ball of fixed radius
in Rp and independently of X, we have E‖V T b‖2

2 = n
p
‖b‖2

2, so we just need

‖b‖2 = O(
√

log p/n). Finally, if the coefficient perturbation is caused by the
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confounding variables as in (3.2), it is given by b = (ΓTΓ + ΣE)−1ΓT δ and it
satisfies the following:

Lemma 2. Assume that the coefficients in the confounding model (3.2) satisfy
that ‖δ‖2 = O(

√
log p) and λmin(Γ) = Ω

(√
p
)
. Assume also that λmin(ΣE) is

bounded from below. Then we have:

‖b‖2 = ‖(ΓTΓ + ΣE)−1ΓT δ‖2 = O

(√
log p

p

)

The condition λmin(Γ) = Ωp(
√
p) is satisfied, for example, if lim inf p

q
> 1 and

either the rows or columns of Γ are independent, identically distributed N(0,Ω)
random variables with λmin(Ω) bounded away from zero. If the components of
δ are i.i.d. we have ‖δ‖2 = Op(

√
q), so we require that the number of latent

variables is q = O (log p).

From this we see that it is important that the effect of the latent variables
is spread over many predictors. If this is not true, λmin(Γ) and thus ‖b‖ will
be too large.

Assumption (A2) This assumption ensures that the singular vectors of
X are pointing in the favourable direction. This always holds under the
uniformity condition described in the next lemma.

Lemma 3. If V has a uniform distribution on the Stiefel manifold indepen-
dently of D, then for any k = Ω(n), we have

φ2
Mk

= Ωp

(
n

p

)
.

This uniformity assumption is sensible to make since it will be true under
any of the two following scenarios: the first is that Σ is a multiple of the identity
matrix, i.e. that the components of X are i.i.d. normal random variables; the
second is that the singular vectors of Σ have the uniform distribution on the
space of orthogonal matrices themselves. This, for example, might happen
in the confounding model (3.2), when ΣE = σ2

EIp and ΓQ has the same
distribution as Γ for any orthogonal matrix Q, for example if the components
of Γ are i.i.d. normal variables. The uniformity assumption is sufficient, but
not necessary for the assumption (A2) to hold. However, the distribution of
φMk

is not tractable otherwise and the assumption A2 is hard to verify.
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Assumption (A3) This assumption implies that a certain proportion
of singular values is large enough. The following lemma shows that the
assumption (A3) is satisfied for the random Gaussian design, such as in
confounding model (3.2).

Lemma 4. Assume that X is a random design matrix with rows being drawn
i.i.d. from the Np(0,Σ) distribution. If lim sup k

n
< 1 or if lim inf p

n
> 1, we

have
d2
k = Ωp(λmin(Σ)p).

5.5 Low dimensional case: n > p

In the previous sections we have considered the high-dimensional case
where the number of predictors is higher than the sample size. When n > p,
the statement of the main Theorem 3, namely that we can achieve the optimal

error rate O
(

sσ
λmin(Σ)

√
log p
n

)
, and its proof are still valid if we modify the

assumptions as follows:

(A1’) The perturbation vector b satisfies ‖b‖2 = O
(

σ
λmin(Σ)

√
s log p
n

)
(A2’) For any k = Ω(p), we have φ2

Mk
= Ω(1)

(A3’) For any k such that lim sup k
p
< 1, it holds that d2

k = Ω(λmin(Σ)p)

and then our spectral transformation needs to satisfy

(B1’) and (B2’) ∃k = Ω(p) such that d̃(k) = Ω(d̃(1)) and d̃(k) = Ω(λmin(Σ)p)

which remains true for Lava or Trim transform.
The assumptions (A2’), (A3’) can easily be justified for the random

design by the analogues of Lemma 3 and 4. The only substantially stronger
assumption is (A1’), which will not hold for the confounding model (3.2),
since from Lemma 2, which holds for low-dimensional setting as well, we only
have that

‖b‖2 = O

(√
log p

p

)
.

This is because b only depends on how the confounding variables affect the
predictors and not on the number of data points. The more predictors we
have, the more is the effect of the confounding variables spread out.
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Figure 5.2: Dependence of the estimation error ‖β̂ − β‖1 on the sample size,
including p < n, for different spectral transformations in the confounding
model, as described in Section 6.1.1.

From the proof of Theorem 3, we obtain for the low-dimensional setting:

‖β̂ − β‖1 = O

(
sσ

λmin(Σ)

√
log p

n
+
√
s‖b‖2

)
.

When n > p, the first term will not dominate the second term anymore,

and our theory only guarantees the error rate O
(√

s log p
p

)
. This would still

converge to zero if p (with p < n) diverges to∞ and the sparsity s is sufficiently
small. One can not expect the same error rate as in the high-dimensional
setting, since this would imply that, for fixed p, the error converges to 0 as
n → ∞ and this can not happen because of the perturbation b. Since for
the coefficients in the active set we can not distinguish the signal from the
perturbation, we expect that the error rate can not be smaller than ≈ s‖b‖∞.
It would be interesting to find the optimal error rate with respect to the
perturbation b.

This is also illustrated in Figure 5.2, where we can see that even though
the error decreases as we increase the number of data points, it still has a
nonzero limit. However, the error is small, especially in the comparison with
the standard Lasso, and there is a benefit in using our method.
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6 Empirical Results

We present here empirical results for simulated and real data.

6.1 Simulations

We demonstrate the performance of various spectral transformations for
estimating the coefficient vector β with the Lasso: Trim transform, Lava,
Puffer and PCA adjustment. We investigate the cases when the perturbation
b is randomly sampled and when it arises from the hidden confounding.

6.1.1 Setting

We generate the data from the confounding model (3.2). We take ΣE = Ip
and β = (1, 1, 1, 1, 1, 0, . . . , 0), so s = 5. For various numbers q of hidden
confounders, we sample the coefficients Γij and δi independently as standard
normal random variables. Finally, we consider different noise levels σ for the
standard deviation of ε. Unless stated otherwise, the sample size is set to be
n = 100 and the dimensionality of the predictors is p = 200. All results are
based on 500 independent simulations.

It is also interesting to consider the perturbed linear model (3.1). We do
not generate data from this model directly, but we will modify the perturbation
term b obtained from the confounding model. This way we can compare the
results obtained in the confounding model and the perturbed linear model
directly with each other. We replace b = (ΓTΓ + ΣE)−1ΓT δ by Qb where Q is
a random rotation matrix so that the new perturbation has the same size, but
with uniformly random direction. We note that the resulting distribution is
the same as of the perturbed linear model (3.1), where rows of X are drawn
from N(0,Σ), where Σ = ΓTΓ + Ip, and b is drawn uniformly from a ball of
radius (ΓTΓ + Ip)

−1ΓT δ.

6.1.2 Choosing λ

In practice we encounter the problem of choosing the penalty level λ for
the Lasso after applying the spectral transformation. Usually this is done by
cross-validation. However, in our case β + b describes the data much better
than β, which we are trying to recover. Therefore, cross-validation tends to
choose much smaller value of λ than the one we want. For this reason, and
for simplicity, in our simulations we have used the oracle value of λ, i.e. the
one for which ‖β̂λ − β‖1 is smallest.

Even though this might seem to be a problem, this method can still be
efficiently used as a screening tool, e.g. we can choose the smallest λ for which
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the corresponding set of selected variables will have the wanted size. We
could use such this screened set of variables in the second stage, for example,
by using OLS on the X̃Ŝ and Ỹ . Using other methods, such as OLS, in
combination with the Lasso is common in practice [19].

6.1.3 Results

Here we present the results of the simulations for both the confounding
model and the perturbed linear model. A fundamental difference between
them is that the coefficient perturbation arising from the confounding model is
pointing towards the singular vectors of X corresponding to the large singular
values (see Figure 4.1). This makes ‖Xb‖2 larger for a fixed ‖b‖2, and in this
case the estimation error will be larger. On the other hand, in this case we
can improve our accuracy more by shrinking large singular values, as will be
shown below.

Noise versus perturbation In the left plot in Figure 6.1 we can see how
the estimation error changes depending on the size of the noise σ in the
confounding model. When σ is small, the perturbation b has the biggest
effect on the error. On the other hand, if σ is large, then the influence of the
perturbation b becomes less important.

We can see that the standard Lasso is affected a lot by the coefficient
perturbation, whereas the Puffer transformation is affected the most by
additive noise, since the slope of its corresponding curve is the steepest.
When n, p are close to each other, some of the singular values of X become
quite small and thus mapping them to a constant can inflate the error ε a lot
in the corresponding directions, this is evident in Figure 5.2.

We can observe that the oracle PCA adjustment, which removes exactly
the q largest singular values from X, works well, especially when σ is small.
For larger σ, we see that the Trim transform and Lava work slightly better
since they do not remove that much of the signal.

In the right plot of Figure 6.1, we have randomized the direction of b while
keeping everything else constant, as described in Section 6.1.1. This then
corresponds to a model with random perturbation b but no specific further
structure in terms of confounding. We can see a substantial improvement of
the standard Lasso: in hindsight this shows that the Lasso is very sensitive to
confounding variables but much less so to perturbation of sparsity. Also, it
is worth noting that the PCA adjustment method is now consistently worse
than the Trim transform or Lava, since the projection of b onto the span of
the first q singular vectors is not that large anymore.

22



Figure 6.1: Dependence of the estimation error ‖β̂ − β‖1 on the size of the
noise for different spectral transformation for confounding model (left) and
the perturbed linear model (right), as described in Section 6.1.1.

Number of confounding variables In Figure 6.2 we can see how the
estimation error depends on the number q of confounding variables. As above,
we see that the Lasso is severely affected by the presence of the confounding
variables. The Puffer transform does not work very well since n and p are of
similar size, whereas the Trim transform and Lava exhibit similar and good
performance in all cases.

PCA adjustment works well only for the confounding model and only
if we correctly guess the number of confounding variables. In the left plot
in Figure 6.2 we can clearly see how the estimation error is affected by
the misspecification of the number of the principal components we remove.
The oracle PCA method, which removes exactly q principal components,
performs reasonably well, particularly for smaller values of q. However, if we
overestimate or especially if we underestimate the number of confounding
variables, the estimation error will become significantly worse compared to
the Trim transform or Lava.

Method robustness We are interested in whether there are any disadvan-
tages in using the spectral transformations if we wrongly think that the sparse
coefficient has been perturbed or that there is some hidden confounding.

In Figure 6.3 we display the estimation error for the confounding model
as in Figure 6.2, but where the coefficient bias b has been set to 0. i.e. this
is a standard sparse linear model with X being generated from the spiked
covariance model.

There is no indication for relevant differences between the performances of
the Trim transform, Lava and the Lasso. The Lasso performs slightly better
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Figure 6.2: Dependence of the estimation error ‖β̂ − β‖1 on the number of
confounding variables for different spectral transformation for confounding
model (left) and the perturbed linear model (right) as described in section
6.1.1.

for larger values of q and slightly worse for smaller q. It is worth noting that
on this plot the estimation error starts to decrease as q increases, which is
due to a scaling issue. This happens because the variance of X increases as q
increases, since Σ = ΓTΓ + ΣE, thus effectively increasing the signal to noise
ratio.

Our empirical results support theoretical evidence which showed that it is
safe to use wisely chosen spectral transformations such as the Trim transform
or the Lava. If there are any confounding variables present, there is a large
improvement over the standard Lasso. On the other hand, if there are no
confounding variables, the Trim transform or Lava will have about the same
performance as the Lasso. Therefore, our method can be thought of as an
easy to use modification of the Lasso which is robust to hidden confounding.

6.2 Application to genomic dataset

In this section we demonstrate the robustness of our method against hidden
confounders for a real genomic dataset where we have certain knowledge
about the confounding variables. We inspect various spectral transformations
followed by the Lasso and evaluate the differences between the estimates for
the original data and the one where the confounding variables have been
adjusted for.
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Figure 6.3: Size of the estimation error ‖β̂ − β‖1 for a sparse linear model
where Σ = ΓTΓ+Ip, i.e. the confounding model with the induced perturbation
b set to b = 0.

6.2.1 Gene expression dataset

We have obtained data from the GTEx Portal (http://gtexportal.org).
The GTEx project provides large-scale data with an aim to help the scientific
community to study gene expression, gene regulation and their relationship
to genetic variation. It provides gene expression data from 11688 samples
collected postmortem from 53 different tissues of 714 human donors.

Gene expression is a process in the cell in which the information stored in a
certain gene is used for the synthesis of gene products such as proteins. In the
GTEx Project it was quantified by the amount of the mRNA in the cell which
was created from this gene. Gene expression differs among different people
and even among different cells within the human body. The type of the cells
is determined by the gene expression within them; even though the DNA in
all cell nuclei is the same, cells in different tissues behave and look differently
and perform significantly different tasks. Gene expression is also affected by
the genetic variation and determining the expression quantitative trait loci
(eQTL), which are parts of genome which explain the variation in the gene
expression, is a very important problem which will help to understand the
relationship between genetic variation and organismal phenotypes.
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6.2.2 Setting

We use the fully processed, filtered and normalized gene expression matrix
for the skeletal muscle tissue. We consider the gene expression of p = 14713
protein-coding genes measured from n = 491 samples. For our purpose,
an important aspect of this dataset is that there are also q = 65 different
covariates provided, which are proxys for hidden confounding variables. They
include genotyping principal components and PEER factors. We thus obtain
the deconfounded data by regressing out these given covariates.

The left panel of Figure 6.4 displays the singular values of the initial data
matrix. We see that the first several singular values are substantially larger
than the rest which suggests a possible existence of hidden confounders. In
the right part of Figure 6.4 we can see the singular values of the deconfounded
data matrix where we have regressed out all of the q = 65 covariates which
are provided as confounding proxies.

Figure 6.4: Singular values of the gene expression data matrix for skeletal
muscle tissue before (left) and after (right) regressing out the provided q = 65
confounding covariates.

We are going to explore now the robustness of the Lasso, Trim transform,
and Lava against hidden confounders by comparing the estimates based on
the original and the deconfounded data. For a fixed value of k, we regress
out first k provided proxy confounders from the original gene expression data
matrix X in order to get the matrix X(k) and we randomly choose one column
to represent the response Y . We are thus trying to explain the expression of
one gene by the expressions of other genes.

For every s = 1, . . . , 20, we apply the given method on X and X(k) with
the regularization λ chosen as the largest value such that the support size
of β̂ equals a pre-specified value s. This leads to estimates β̂s and β̂

(k)
s We
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measure the similarity of the corresponding supports by J(supp β̂s, supp β̂
(k)
s ),

where J is the Jaccard distance:

J(A,B) =
A4B
A ∪B

6.2.3 Results

In the top left image in Figure 6.5, we can see the difference of the
estimates for the original and the deconfounded data, where 5 arbitrarily
chosen confounding variables have been removed. We can see that the Jaccard
distance for the Lasso is close to 1, indicating that the estimated support
sets are very different and almost disjoint; The Trim transform and Lava are
much more robust to the hidden confounders and we see that the Jaccard
distance between the estimates based on confounded and deconfounded data
is much smaller.

In order to make sure that the choice of response Y did not affect the
results, we have repeated this experiment for 500 randomly chosen genes and
averaged the obtained results. The results are also displayed in the Figure 6.5.
We can see that, as we increase the number k of confounding variables which
we regress out, the Jaccard distance for all methods is increasing. This is
to be expected since X(k) and X are becoming more different as we increase
k. However, we can infer that the Trim transform and Lava are consistently
better than the Lasso, exhibiting also in this real dataset the robustness
against confounding variables.

7 Discussion

We propose to add robustness against hidden confounding variables by
pre-employing a wisely chosen spectral transformation before using the Lasso
or other high-dimensional sparse regression techniques. There is essentially
nothing to lose but much to be gained which is in line with the typical
argument of robustness [14], [11]. Besides the robustness issue, we can also
take the viewpoint of deconfounding before further analysis: this would be
the typical approach for problems and applications where hidden confounding
is expected to happen, a prime example being genetics [21].

The confounding issue in the context of linear models can be represented
as a regression problem with coefficient β + b; the coefficient β is the true
underlying parameter in absence of confounding variables, while the pertur-
bation b is due to the confounding. We develop theory for a linear model
with regression parameters β + b where β is sparse and the perturbation b
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Figure 6.5: Jaccard distance of the supports of the estimates based on
the original and deconfounded data for one randomly chosen response (top
left). Jaccard distance, averaged over 500 randomly chosen responses, of the
supports of estimates based on the original data and data with 5 (top right),
15 (bottom left) and 65 (bottom right) confounder proxies removed.

sufficiently small or of a special structure. We show for a class of spectral
transformations, in conjunction with using the Lasso afterwards, that the
method achieves the minimax optimal convergence rate of ‖β̂ − β‖1, that
is, for estimating the sparse parameter part of the problem; see Section 5
and Theorem 3. Such a theoretical result is entirely new and covers also the
Lava method [6]. In particular, the theoretical result also establishes spectral
deconfounding as an optimal method for removing the effect of dense hidden
confounders in high-dimensional settings.

Another advantage of our approach is its simplicity: it is just one simple
pre-transformation step before using the Lasso. It just requires the computa-
tion of the SVD of the design matrix which has computational complexity of
O(min(n2p, np2)) and can be done in just a few lines of code.

The topic of deconfounding has not received too much attention, despite
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its practical importance [3, 10]. Here we have shown that it is possible to
protect against hidden dense confounding in the case of linear regression.
Similar ideas might be powerful as well for more complicated models.
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9 Proofs

Theorem 1. Assume the model in (3.1) with fixed design X and i.i.d. zero-
mean sub-Gaussian errors εi, for i = 1, . . . n. Let F ∈ Rn×n be an arbitrary
linear transformation and A > 0 an arbitrary fixed constant. Then there exists
λmin ≥ 0 such that for any λ ∈ [λmin, Bλmin], where B ≥ 1 is a fixed constant,
and with probability at least 1− 2p1−A2/8 we have

‖β̂ − β‖1 ≤ C1
sσ

φ2
Σ̃

√
log p

n
max
i

(
XT (F TF )2X

n

)1/2

ii

+ C2

√
s

n

‖X̃b‖2

φΣ̃

,

where C1, C2 are constants depending only on A and B.

Proof. Denote by β0 the true coefficient vector.
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Since β̂ minimizes 1
n
‖Ỹ − X̃β‖2

2 + λ‖β‖1, we have:

1

n
‖Ỹ − X̃β̂‖2

2 + λ‖β̂‖1 ≤
1

n
‖Ỹ − X̃β0‖2

2 + λ‖β0‖1

1

n
‖X̃(β̂ − β0)‖2

2 + λ‖β̂‖1 ≤
2

n
(Ỹ − X̃β0)T X̃(β̂ − β0) + λ‖β0‖1

≤ 2

n
ε̃T X̃(β̂ − β0) +

2

n
bT X̃T X̃(β̂ − β0) + λ‖β0‖1

1

n
‖X̃(β̂ − β0 − b)‖2

2 + λ‖β̂‖1 ≤
2

n
ε̃T X̃(β̂ − β0) +

1

n
‖X̃b‖2

2 + λ‖β0‖1

Let us work on the event {‖ 2
n
X̃T ε̃‖∞ ≤ τ}, which has probability at least

1− 2p1−A2/8 for τ = Aσ
√

log(p)
n

maxi≤n

(
XT (FTF )2X

n

)1/2

ii
, as it is shown in the

Lemma 5. On this event we have

2

n
ε̃T X̃(β̂ − β0) ≤ 2

n
‖X̃T ε̃‖∞‖β̂ − β0‖1 ≤ τ‖β̂ − β0‖1

from Hölder’s inequality. We now have:

1

n
‖X̃(β̂ − β0 − b)‖2

2 + λ‖β̂‖1 ≤ τ‖β̂ − β0‖1 +
1

n
‖X̃b‖2

2 + λ‖β0‖1

By using that β0
Sc = 0, we get that

1

n
‖X̃(β̂ − β0 − b)‖2

2 + (λ− τ)‖β̂Sc‖1

≤ τ‖β̂S − β0
S‖1 + λ‖β0

S‖1 − λ‖β̂S‖1 +
1

n
‖X̃b‖2

2

≤ (λ+ τ)‖β̂S − β0
S‖1 +

1

n
‖X̃b‖2

2

Let us now write

φΣ̃(L, S) = min
β∈R(L,S)

√
βT Σ̃β

1√
s
‖βS‖1

> 0

We need to consider two cases:

• Case 1: 1
n
‖X̃b‖2

2 ≤ λ‖β̂S − β0
S‖1

• Case 2: 1
n
‖X̃b‖2

2 ≥ λ‖β̂S − β0
S‖1
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In the first case we have

1

n
‖X̃(β̂ − β0 − b)‖2

2 + (λ− τ)‖β̂Sc − βSc‖1 ≤ (2λ+ τ)‖β̂S − β0
S‖1

From this we see that the error β̂− β ∈ R(L, S) = {x : ‖xSc‖1 ≤ L‖xS‖1} for
L = 2λ+τ

λ−τ (we take λ > τ), so we have:

1

n
‖X̃(β̂ − β0 − b)‖2

2 + (λ− τ)‖β̂ − β0‖1 ≤ 3λ‖β̂S − β0
S‖1

≤ 3λ
√
s‖X̃(β̂ − β0)‖2√
nφΣ̃(L, S)

≤ 3λ
√
s‖X̃(β̂ − β0 − b)‖2√

nφΣ̃(L, S)
+

3λ
√
s‖X̃b‖2√

nφΣ̃(L, S)

≤ 9λ2s

2φΣ̃(L, S)2
+

1

n
‖X̃(β̂ − β0 − b)‖2

2 +
1

n
‖X̃b‖2

2

by using the inequality xy ≤ x2

4
+ y2 twice, which finally gives us

(λ− τ)‖β̂ − β0‖1 ≤
9λ2s

2φΣ̃(L, S)2
+

1

n
‖X̃b‖2

2

In the second case we have

1

n
‖X̃(β̂ − β0 − b)‖2

2 + (λ− τ)‖β̂ − β0‖1 ≤
3

n
‖X̃b‖2

2

So, regardless whether we are in the Case 1 or the Case 2, we get that

(λ− τ)‖β̂ − β0‖1 ≤
9λ2s

2φΣ̃(L, S)2
+

3

n
‖X̃b‖2

2

By dividing by (λ− τ) and minimizing over λ > τ , we get that the minimum
value of the RHS of the bound is:

9sτ

φΣ̃(L, S)2
+

√(
9sτ

φΣ̃(L, S)2

)2

+
54s‖X̃b‖2

2

φΣ̃(L, S)2n

which is achieved for

λmin = τ +

√
τ 2 +

2φΣ̃(L, S)2‖X̃b‖2
2

3sn
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Therefore, for λ ∈ [λmin, Bλmin], we then get

‖β̂ − β‖1 ≤
9B2sτ

φΣ̃(L, S)2
+B2

√(
9sτ

φΣ̃(L, S)2

)2

+
54s‖X̃b‖2

2

φΣ̃(L, S)2n

In the case when b = 0 and F = In (the usual Lasso regression), we indeed
take λ = 2τ . We can see that, when the coefficient perturbation is present, it
is better to penalize more as this will remove the effect of the perturbation to
some extent.

Since L = 2λ+τ
λ−τ and λ ≥ 2τ , we have L ≤ 5 and then

φΣ̃(L, S) ≥ φΣ̃(5, S) = φΣ̃

Finally, by using this and the inequality
√
x2 + y2 ≤ x+ y where x, y > 0,

we get

‖β̂ − β0‖1 ≤
18B2sτ

φ2
Σ̃

+B2

√
27s‖X̃b‖2

2

φ2
Σ̃
n

which is what we wanted to show. We see that C1 = 18AB2 and C2 =
3
√

3B2.

Lemma 5. Let A > 0 be arbitrary constant. Let us define

τ = Aσ

√
log(p)

n
max
i≤n

(
XT (F TF )2X

n

)1/2

ii

If the components of ε are i.i.d. sub-Gaussian random variables with mean 0
and parameter σ, we have

P
(

2

n
‖X̃T ε̃‖∞ ≤ τ

)
≥ 1− 2p1−A2/8

Proof. Let us write ν = 2
n
X̃T ε̃ = 2

n
XTF TFε. We have that νi is a sub-

Gaussian random variable with mean 0 and parameter σi = 2σ
n
‖(F TF )Xei‖2

From the union bound we have:

P(‖ν‖∞ > τ) ≤
∑
i

P (|νi| > τ) ≤ pmax
i

P (|νi| > τ)

From the tail bound for sub-Gaussian random variables we now get:

P(‖ν‖∞ ≤ τ) ≥ 1− 2 exp

(
− τ 2

2 maxi σ2
i

+ log p

)
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Therefore, choosing

τ = Aσ

√
log(p)

n
max
i

(
XT (F TF )2X

n

)1/2

ii

ensures that
P(‖ν‖∞ ≤ τ) ≥ 1− 2p1−A2/8

as required.

Lemma 1. Consider a spectral transformation F as in (4.1). Let 1 ≤ k <
r = min(n, p) be an arbitrary integer. Then:

φ2
Σ̃
≥

r∑
i=1

1

n
d̃2

(i)(φ
2
Mi
− φ2

Mi−1
) ≥ 1

n
d̃2

(k)φ
2
Mk
.

Proof. We have

αT Σ̃α =
∑
i≤n

d̃2
i (V

T
i α)2 =

∑
i≤n

(d̃2
(i) − d̃2

(i+1))
∑
j≤i

(V T
(j)α)2

where we define d̃n+1 = 0 for convenience. Now using the fact that the
infimum of the sum is not smaller than the sum of the infimums, we get

φ2
Σ̃
≥
∑
i≤n

1

n
(d̃2

(i) − d̃2
(i+1))φ

2
Mi

=
∑
i≤n

1

n
d̃2

(i)(φ
2
Mi
− φ2

Mi−1
)

where M0 is defined as the null matrix for convenience. Let us now fix k ≤ n.
By using that the sequence d̃(i) is decreasing, we have∑

i≤n

1

n
d̃2

(i)(φ
2
Mi
− φ2

Mi−1
) ≥

∑
i≤k

1

n
d̃2

(k)(φ
2
Mi
− φ2

Mi−1
) =

1

n
d̃2

(k)φ
2
Mk

which finishes the proof.

Theorem 2. Under assumptions of Theorem 1, for any k ≤ r = min(n, p)
and any spectral transformation F mapping di to d̃i, we get

‖β̂ − β‖1 ≤ C1
sσ

1
n
d̃2

(k)φ
2
Mk

√
log p

n
max
i

(
d̃i
di

)2

+ C2

√
s
d̃(1)‖V T b‖2

d̃(k)φMk

.

Proof. By the Lemma 1, we have

φ2
Σ̃
≥ 1

n
d̃2

(k)φ
2
Mk
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From the facts that X is scaled so that its columns have norm
√
n and

that F is a spectral transform mapping di to d̃i, we get

max
i≤n

(
XT (F TF )2X

n

)1/2

ii

= max
i≤n

1√
n
‖(F TF )Xei‖2

≤ max
i≤n

1√
n
‖F TF‖2‖Xei‖2 ≤ max

i≤n

(
d̃i
di

)2

Finally, we have that

‖X̃b‖2 = ‖UD̃V T b‖2 ≤ ‖D̃‖2‖V T b‖2 = d̃(1)‖V T b‖2

Combining those inequalities with the bound from Theorem 1, we get the
required bound for spectral transformation F .

Theorem 3. Assume that the model assumptions (A1), (A2) and (A3)
hold. Consider a spectral transformation F = UD̃D−1UT with d̃i ≤ di which
satisfies: there exists k = Ω(n) such that

(B1) d̃(k) = Ω
(
d̃(1)

)
(B2) d̃2

(k) = Ω (λmin(Σ) p)

Then we can choose λ so that, despite the coefficient perturbation, the `1-
estimation error achieves the minimax optimal rate:

‖β̂ − β‖1 = Op

(
σs

λmin(Σ)

√
log p

n

)
In addition, the Trim transform (4.2) with τ = dbtnc, where t ∈ (0, 1) is an
arbitrary constant, satisfies the conditions (B1) and (B2). Other examples
of such spectral transformations are discussed below.

Proof. Let us first show that if D̃ satisfies assumptions (B1) and (B2), we
have

‖β̂ − β‖1 = Op

(
σs

λmin(Σ)

√
log p

n

)
Since d̃i ≤ di, by Theorem 2, we can choose λ such that with probability

going to 1 exponentially fast in p, we have:

‖β̂ − β‖1 ≤ C1
sσ

1
n
d̃2

(k)φ
2
Mk

√
log p

n
+ C2

√
s
d̃(1)‖V T b‖2

d̃(k)φMk
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The assumption (B1) gives us that
d̃(1)

d̃(k)
= O(1), whereas the assumption

(A2) and the fact that k = Ω(n) give us that φ2
Mk

= Ω
(
n
p

)
. Therefore, the

second term is of order

C2

√
s
d̃(1)‖V T b‖2

d̃(k)φMk

= O
(√

sp

n
‖V T b‖2

)
The assumption (B2) gives us d̃2

(k) = Ω (λmin(Σ)p), which together with

φ2
Mk

= Ω
(
n
p

)
gives us that the first term is of order

C1
sσ

1
n
d̃2

(k)φ
2
Mk

√
log p

n
= O

(
σs

λmin(Σ)

√
log p

n

)
So if we want that the sum of those two terms is of that order, we need to

have

‖V T b‖2 = O

(
σ

λmin(Σ)

√
s log p

p

)
which is the assumption (A1).

If we need just the consistency, we need both terms to tend to zero. This
will be true whenever

‖V T b‖2 = o

(√
n

ps

)
Let us now assume that the assumption (A3) holds. Then for t ∈ (0, 1)

we have
d2
btnc = Ω(λminp)

so the Trim transform satisfies the assumption (B2) for k = btnc = Ω(n).
Also, the assumption (B1) is trivially satisfied since d̃(1) = d̃(k) = dk.

Lemma 6. Let B ∈ Rp×p be a symmetric positive definite matrix and let
A ∈ Rn×p be arbitrary matrix, n < p. Assume that the smallest singular value
of B is at least 1. Let σi(A) and σi(AB) be the i-th largest singular values of
A and AB respectively. For i ≤ n, we have

σi(A) ≤ σi(AB)

Proof. Let e1, . . . , en i f1, . . . , fn be the left singular vectors of A and AB
corresponding to the singular values in a decreasing order. For i = 1, since
σmin(B) ≥ 1, we have:

σ1(AB) ≥ ‖(AB)T e1‖2 ≥ ‖BAT e1‖2 ≥ ‖AT e1‖2 = σ1(A)
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Let us proceed by induction. Since dim(U ∩ V ) ≥ dim(U) + dim(V )− n,
we conclude that Fk = span {f1, . . . , fk}⊥ and span {e1, . . . ek+1} have a non-
trivial intersection, so we can choose a unit vector v =

∑k+1
j=1 αjej ∈ Fk. Since

σk+1(AB) = max{(AB)Tx : x ∈ Fk, ‖x‖2 = 1}, we have:

σk+1(AB) ≥ ‖(AB)Tv‖2 ≥ ‖ATv‖2 =

√√√√k+1∑
j=1

α2
jσj(A)2 ≥ σk+1(A)

The second inequality holds because σmin(B) ≥ 1 and the last because∑
α2
j = 1 and σi(A) are decreasing.

Lemma 4. Assume that X is a random design matrix with rows being drawn
i.i.d. from the Np(0,Σ) distribution. If lim sup k

n
< 1 or if lim inf p

n
> 1, we

have
d2
k = Ωp(λmin(Σ)p).

Proof. Let Z ∈ Rn×p be a matrix whose elements are independent standard

normal variables: Zij
i.i.d.∼ N(0, 1). Let ζ1 ≤ . . . ≤ ζn be the singular values of

Z.
Since we can write X = ZΣ1/2, by Lemma 6, we have dk ≥ λmin(Σ)1/2ζk,

so it suffices to show that ζk = Ωp(p
1/2).

From [25], we have that

ζn ≥
√
p−
√
n− C

√
log p

with probability at least 1− 2p−C
2/2, so if lim inf p

n
> 1, we have ζk ≥ ζn =

Ωp(p
1/2).

In the other case, we can assume p
n
→ 1 (we know lim inf p

n
= 1, but

because of the bound above, we can w.l.o.g. consider only the subsequence
converging to 1). The empirical distribution of the nonzero singular values
of 1

n
ZTZ converges to the Marchenko-Pastur density supported on [0, 4] [18],

which is given by

1

2π

√
4− x
x

1{x ∈ [0, 4]}

Let t = lim sup k
n
< 1. Then we can choose 0 < δ < 1− t and z > 0 such

that P(ζ > z) = t+ δ, where ζ is drawn from the Marchenko-Pastur density
given above.

We have

# singular values of ZTZ
n

larger than z

n
→ t+ δ

38



so the number of singular values of ZTZ
n

which are larger than z will eventually

be larger than nt > k, therefore
d2k
n
> z > 0 eventually, so dk = Ωp(n

1/2) =
Ωp(p

1/2), as required.

Lemma 3. If V has a uniform distribution on the Stiefel manifold indepen-
dently of D, then for any k = Ω(n), we have

φ2
Mk

= Ωp

(
n

p

)
.

Proof. Let Z ∈ Rk×p be a random matrix whose components are Zij
i.i.d.∼

N(0, 1). Let Z = UZDZV
T
Z be its SVD and let ζ1 ≥ . . . ≥ ζk be its singular

values.
Since V is independent of D, [V(1), . . . , V(k)] is uniform on the Stiefel

manifold as well. This matrix has the same distribution as the matrix VZ and
thus Mk has same distribution as VZV

T
Z

From the Lasso theory [4] we know that φ2
1
k
ZTZ
≥ 1/2 with high probability.

On the other hand we have φ2
1
k
ZTZ
≤ 1

k
ζ2

1φ
2
VZV

T
Z

.

From Corollary 5.35. of [25] we know

ζ1 ≤
√
p+
√
k + C

√
log p

with probability at least 1 − 2p−C
2/2, for any C > 0. This implies that

ζ1 = Op(
√
p). By combining those results, we have that φ2

VZV
T
Z

= Ωp

(
k
p

)
=

Ωp

(
n
p

)
, which finishes the proof.

Lemma 7. Let A,B ∈ Rp×p be two symmetric, positive definite matrices
such that A � B and A,B commute. Let C ∈ Rq×p be an arbitrary matrix.
Then we have for an arbitrary v ∈ Rp

‖(CTC + A)−1CTv‖2 ≤ ‖(CTC +B)−1CTv‖2

Proof. Since A and B commute, we have that

A2 −B2 = (A−B)(A+B)

which is positive semidefinite, since it is a product of two positive semidefinite
matrices, as A � B.

Furthermore, A(CTC) � B(CTC) since (A−B)(CTC) � 0 is a product
of two positive semidefinite matrices. Analogously, (CTC)A � (CTC)B.
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All this gives us that

(CTC + A)2 = (CTC)2 + (CTC)A+ A(CTC) + A2

� (CTC)2 + (CTC)B +B(CTC) +B2 = (CTC +B)2

which in turn implies that

(CTC + A)−2 � (CTC + A)−2

Finally, this gives us:

‖(CTC + A)−1CTv‖2
2 = vTC(CTC + A)−2CTv

≤ vTC(CTC +B)−2CTv = ‖(CTC +B)−1CTv‖2
2

which finishes the proof.

Lemma 2. Assume that the coefficients in the confounding model (3.2) satisfy
that ‖δ‖2 = O(

√
log p) and λmin(Γ) = Ω

(√
p
)
. Assume also that λmin(ΣE) is

bounded from below. Then we have:

‖b‖2 = ‖(ΓTΓ + ΣE)−1ΓT δ‖2 = O

(√
log p

p

)
The condition λmin(Γ) = Ωp(

√
p) is satisfied, for example, if lim inf p

q
> 1 and

either the rows or columns of Γ are independent, identically distributed N(0,Ω)
random variables with λmin(Ω) bounded away from zero. If the components of
δ are i.i.d. we have ‖δ‖2 = Op(

√
q), so we require that the number of latent

variables is q = O (log p).

Proof. Assume q < p. Let us write Γ = UΓCV
T

Γ for the SVD of Γ and let
c1 ≥ . . . ≥ cq ≥ 0 be the singular values of Γ. Assume that the smallest
singular value of ΣE is bounded from below by σ2

E.
Since ΣE � σ2

EI and ΣE and σ2
EI commute, the Lemma 7 gives us that it

suffices to show that

‖(ΓTΓ + σ2
EIp)

−1ΓT δ‖2 = O

(√
log p

p

)
We can write now

‖(ΓTΓ + σ2
EIp)

−1ΓT δ‖2
2 =

q∑
i=1

c2
i

(c2
i + σ2

E)2
((UΓ)Ti δ)

2 ≤ max
i

c2
i

(c2
i + σ2

E)2
‖δ‖2

2

≤ ‖δ‖2
2

λmin(Γ)2
= O

(
log p

p

)
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which finishes the proof. From the proof we see that we can also allow to
have ci ≤ 1√

p
. Small singular values of Γ imply that we can ignore some

confounding variables as they can be written as linear combination of others.
If the rows or columns of Γ are i.i.d. N(0,Ω) random variables, we can

write Γ as ZΩ1/2 or Ω1/2Z respectively, where Z ∈ Rq×p has i.i.d. N(0, 1)
components. In both cases we have

λmin(Γ) ≥ λmin(Ω1/2)λmin(Z) = Ωp(
√
p)

since λmin(Ω) is bounded from below and λmin(Z) = Ωp(
√
p) (see Corollary

5.35 from [25]).
‖δ‖2

2 = Op(
√
q) follows from central limit theorem when the components

of δ are i.i.d.
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